

The suitability of the *ex vivo* Comet assay to determine DNA damage induced by cigarette smoke in isolated rat lung cells

<u>Annette Dalrymple¹, David Thorne¹, Patricia Ordoñez², Debbie Dillon¹, Clive Meredith¹</u>

¹British American Tobacco, Group R&D, Southampton, Hampshire, SO15 8TL, UK ²VIVOTECNIA Research S.L., Parque Científico de Madrid, C/Santiago Grisolía, 2 (PTM), 28760 Tres Cantos, Madrid, Spain

INTRODUCTION

- Guidelines for the provision of data for genotoxicity in mammalian cells have been re-defined identifying that an ex vivo study undertaken at the same time as in vivo work is
 preferable to a second in vitro study in mammalian cells¹
- As part of a longer term project to incorporate ex vivo end-points into sub-chronic inhalation studies in rodents, we have explored the potential of the Comet assay to monitor DNA damage in isolated rat lung alveolar type II epithelial cells (AEC II)
- AEC II were selected for this study as they are hypothesised to be a target of cigarette smoke exposure in the lung

METHODS

Isolation of AEC II

- Sprague Dawley rats (9 wk, female, 201-225 g) were supplied by Charles River Laboratories
- AEC II were isolated from the rat lung using published methods²⁻⁴ with some modifications
 Table 1
- Cell viability was determined by trypan blue dye exclusion using a Neubauer chamber

Statistical analysis

- ~100 cells/slide were assessed at 20x magnification & percentage tail intensity (TI) recorded using Comet Assay IV image analysis software
- Mean & standard deviation (SD) of TI were calculated
- Oata were analysed by using a published parametric statistical analysis approach⁶

RESULTS

Cell populations

Corresponding author: Annette_Dalrymple@bat.com

Table 1: Stages for AEC II isolation

Step	Procedure			
1. Bronchoalveolar lavage (BAL)	Lungs perfused 6 x 0.15 M NaCl (3 x 4ºC & 3 x at 37ºC)			
2. Trypsinisation	 Trypsin concentration prepared according to body weight (1.25 %/kg) Lungs filled with Trypsin solution & incubated at 37°C for 15 min Lung parenchyma cut into 1 mm pieces FBS added to inactivate trypsin 			
3. DNAse I	Lung explants incubated with DNAse I, 37°C for 5 min*			
4. Filtration - 150 µm	Lysate filtered through a150 µm nylon filter at 4°C			
5. Filtration - 30 µm	Lysate filtered through a 30 µm nylon filter at 4°C			
6. Percoll [®] gradient centrifugation (PGC)	 Filtrate placed on Percoll[®] gradients (1.09 + 1.04 g/ml) Centrifugation (250 x g, 20 min, 4°C) Epithelial cells recovered (4th layer) Cells washed with PBS & centrifuged (2 x 300 x g, 5 min, 4°C) Pellet resuspended in DMEM supplemented with 1% Penicillin/Streptomycin & 1% L-Glutamine 			
7. Culture	Cells were cultured at 37°C, 5% CO ₂ for 1 hour & supernatant containing non- attached cells collected			

* Omitted from 1 wk inhalation study

Alkaline phosphatase staining

- Flow cytometry & AP staining results are detailed in Table 2
- Differences in Leukocyte & AEC II number can be observed at the different stages of the AEC II isolation method

 Table 2: Leukocyte & AEC II at different stages of the isolation method as determined

 by flow cytometry & AP staining

AEC II isolation Step	Leukocytes	% AEC II	
4. Filtration - 150 µm	17.6% ± 4.28	62.6% ± 8.84	
5. Filtration - 30 µm	17.6% ± 3.37	60.6% ± 6.26	
6. Percoll [®] gradient centrifugation	36.6% ± 7.55	59.2% ± 5.64	
7. Culture	22.9% ± 9.55	70.1% ± 8.97	

Basal DNA damage

- The levels of basal DNA damage, as determined by the Alkaline Comet assay are detailed in Table 3 & Figure 1
- Increasing the stages of the AEC II isolation method affects the level of basal DNA damage observed

DNA

%

50

25

8.47 %

Table 3: The levels of basal DNA damage at different stages of the AEC II isolation method as determined by the Alkaline Comet assay

1h culture

15.65 %

Percoll

aradien

9.42 %

Figure 1: Basal DNA damage

at different stages of the

AEC II isolation method.

Mean ± SD of TI

- Isolated AEC II were centrifuged for 5 minutes (105 x g) using a Cytospin (Thermo Scientific) & slides dried at room temperature (RT) for ~15 hours
- Slides were incubated with Alkaline phosphatase (AP) as previously described^{4,5}, washed with dH₂O & subsequently counterstained with 1% Methylene green
- Cells were counted using light microscopy (x1000) & percentage AEC II calculated

Cell population determination

- Cells were isolated from n = 6 rats as detailed in Table 1, & samples collected at stages 4, 5, 6 & 7
- To identify Leukocytes, 1.0x10⁶ cells were incubated with a FITC-CD45 antibody (554877; BD Biosciences). Non-stained cells and cells incubated with a FITC mouse IgG1, κ isotype antibody (550616, BD Biosciences) were used as controls
- Cell were analysed at 535 nm using a FACSCalibur Flow Cytometer (BD Biosciences).
 AEC II within samples collected at stages 4, 5, 6 & 7 were determined by AP staining^{4,5}

Basal DNA damage

Cells were isolated from n = 10 rats as detailed in Table 1, samples collected at stages 4,
 5, 6 & 7 & the level of DNA damage quantified by the Alkaline Comet assay (detailed below)

I week inhalation study

- n = 12 rats were exposed to 0.8 mg/L cigarette smoke (CS) from 3R4F reference cigarettes (University of Kentucky) or sham air (1 h per day, 5 days)
- AEC II were isolated as described in stages 1 to 4 of Table 1 & the level of DNA damage quantified by the Alkeline 8 Medified Alkeline Compt approx (detailed below)

AEC II Isolation Step	DNA damage - % DNA tail	% Cell viability	% AEC II
4. Filtration - 150 µm	8.47 ±17.41	98.2 ± 2.28	49.2 ± 10.73
5. Filtration - 30 µm	9.42 ±19.23	99.0 ± 1.35	57.4 ± 20.07
6. Percoll [®] gradient centrifugation	15.65 ±21.93	99.3 ± 0.85	63.5 ± 10.61
7. Culture	27.36 ± 31.27	99.8 ± 0.51	73.2 ± 12.33

4 1 week inhalation study

- V DNA damage, as determined by the Alkaline Comet assay, was 5.80 ± 11.22% compared to 8.31 ±14.94% for sham air & CS exposed animals respectively Figure 2A & B
- The level of DNA damage, as determined by the Modified Alkaline Comet assay was significantly different for sham air exposed animals when compared to CS, 21.81 ± 21.55% vs. 49.60 ± 23.02%, p<0.01 Figure 2C & D</p>

quantified by the Alkaline & Modified Alkaline Comet assay (detailed below)

Alkaline and Modified Comet assay procedure

- Comet positive control: AEC II isolated from sham exposed rats were incubated with 750 µM methyl methanesulfonate (MMS) for 1 hour at 37°C
- Cell sample preparation: ~20,000-100,000 cells were resuspended in 0.6% low meltingpoint agarose at 37°C & placed on Superfrost slides pre-coated with 1.0% collagen & 1.5% normal melting-point agarose
- Lysis: Slides were placed in Lysis buffer (2.5 M NaCl, 100 mM EDTA,10 mM Trizma,10%, 0.2 M NaOH, DMSO & 1% Triton X-100, pH 10) for 24h at 5°C ± 3
- Wash: Slides were rinsed (3x 5 min) with 4°C Enzyme reaction buffer (ERB, 40 mM HEPES, 0.1 M KCI, 0.5 mM EDTA, 0.2 mg/mL BSA, pH 8) at room temperature (RT)
- Enzyme incubation (Modified Alkaline Comet assay only): Slides were incubated for 45 min, at 37°C with FPG (New England BioLabs[®]) diluted 1:5,000 in ERB
- Alkaline unwinding & electrophoresis: Incubation of slides with Electrophoresis buffer (1 mM EDTA, 300 mM NaOH, pH >13, 4°C) within the electrophoresis tank (Thistle Scientific, pre-cooled, 4°C) for 5 min at RT. Electrophoresis, 20 min, 25 constant volts at RT
- Veutralisation: ~3.5 mL of Neutralisation buffer (0.4 M Trizma, pH 7.5) added per slide
- Fixation & visualisation: Slides were air dried for approximately 24h at RT & 20 µL of VECTASHIELD Mounting Medium containing DAPI (Vector Laboratories Inc.) applied

REFERENCES

 Committee on Mutagenicity Report 2009 "Committee on Mutagenicity of chemicals in food, consumer products and the environment", http://www.iacom.org.uk/meetings/documents/COMJune2009finalmins.pdf
 Richards RJ, Davies N, Atkins J, Oreffo VI, Lung. 1987;165(3):143-158.
 Knaapen AM, Albrecht C, Becker A, Höhr D, Winzer A, Haenen GR, Borm PJ, Schins RP, Carcinogenesis. 2002, 23(7):1111-11120.
 Witherden IR, Tetley TD, Methods Mol Med. 56:137-146.
 Bingle L, Bull TB, Fox B, Guz A, Richards RJ, Tetley TD, Environ Health Perspect. 1990, 5:71-80.
 Bright J, Aylott M, Bate S, Geys H, Jarvis P, Saul J, Vonk R. Pharm Stat. 2011, 10(6):485-493 Figure 2: DNA damage, as measure by the Alkaline Comet assay and Modified Alkaline Comet assay, in AEC II after 5 days sham air or CS exposure. Positive control 750 μ M MMS treatment *ex vivo*. A & C: Bar charts (Mean ± SD of TI), B & D: Scatter plots (Individual log–transformed TI). * p<0.01

CONCLUSIONS

- We have developed methods for AEC II isolation & the ex vivo Comet assay
- These methods may have potential use to determine DNA damage resulting from CS exposure

www.bat-science.com

www.vivotecnia.com